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Abstract.  We study the complete probability distribution P
(
H̄, t

)
 of the 

time-averaged height H̄ = (1/t)
∫ t

0
h(x = 0, t′) dt′ at point x  =  0 of an evolving 

1  +  1 dimensional Kardar–Parisi–Zhang (KPZ) interface h (x, t). We focus 
on short times and flat initial condition and employ the optimal fluctuation 
method to determine the variance and the third cumulant of the distribution, 
as well as the asymmetric stretched-exponential tails. The tails scale as 

− lnP ∼
∣∣H̄∣∣3/2 /√t and − lnP ∼

∣∣H̄∣∣5/2 /√t, similarly to the previously 

determined tails of the one-point KPZ height statistics at specified time t′ = t. 
The optimal interface histories, dominating these tails, are markedly dierent. 
Remarkably, the optimal history, h (x = 0, t), of the interface height at x  =  0 is 
a non-monotonic function of time: the maximum (or minimum) interface height 
is achieved at an intermediate time. We also address a more general problem of 
determining the probability density of observing a given height history of the 
KPZ interface at point x  =  0.
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1.  Introduction

Nonequilibrium stochastic surface growth continues to attract attention for more than 
three decades [1–4]. The commonly used measures of surface growth are the interface 
width and the two-point spatial correlation function [1]. When the interface is rough, 
these measures exhibit, at long times, dynamic scaling properties. Depending on the 
values of the corresponding exponents, the interfaces are divided into dierent univer-
sality classes [1–4]. Although these measures provide a valuable insight, they (and a 
more general measure—the two-point correlation function both in space and in time  
[5, 6]) do not fully capture such a complex object as a stochastically evolving inter-
face. It is not surprising, therefore, that additional measures have been introduced. 
One group of such measures—the persistence and first-passage properties of interfaces 
[7, 8]—has been around since the nineties. More recently, the focus shifted towards 
more detailed quantities, such as the complete probability distribution P (H, t) of the 
interface height h (x = 0, t) = H at the origin at time t. This shift of focus was a result 
of a remarkable progress in the theory of this quantity for the 1  +  1 dimensional 
Kardar–Parisi–Zhang (KPZ) equation [9]—see equation (2) below—which describes an 
important universality class of stochastic growth [10–16].

https://doi.org/10.1088/1742-5468/ab16c1
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In this work we propose to characterize the interface height fluctuations by the 

probability distribution P
(
H̄,T

)
 of the time-averaged height at point x  =  0:

H̄ =
1

T

∫ T

0

h (x = 0, t) dt.� (1)

Fluctuation statistics of time-averaged quantities have attracted much recent interest 
in statistical mechanics, see e.g. reviews [17–20]. It is natural, therefore, to extend their 
use to a characterization of fluctuating interfaces.

A particular problem that we will consider here deals with the KPZ equation that 
governs the evolution in time of the height of a growing stochastic interface h (x, t) in 
1  +  1 dimension:

∂th = ν∂2
xh+

λ

2
(∂xh)

2 +
√
D ξ(x, t).� (2)

The interface is driven by the Gaussian noise ξ(x, t) which has zero average and is 
white, that is uncorrelated, both in space and in time1. At late times, the KPZ interface 
width grows as t1/3, and the lateral correlation length grows as t2/3 [9]. The exponents 
2/3 and 1/3 have been traditionally viewed as the hallmarks of the KPZ universality 
class [1–4]. The exact results [10–16] for the complete one-point height distribution 
P (H, t) led to sharper criteria for the KPZ universality class, and to the discovery 
of universality subclasses based on the initial conditions, see [10–16] and reviews  
[21, 24–27] for details.

Traditionally and understandably, the focus of interest in the KPZ equation has been 
its long-time dynamic scaling properties. More recently, interest arose in the short-time 
fluctuations of the KPZ interface height at a point [22, 28–42]. For flat initial condi-
tion, it takes time of order tλ = ν5/(D2λ4) for the nonlinear term in equation (2) to kick 
in. Therefore, at t � tλ typical fluctuations of the interface are Gaussian and described 
by the Edwards–Wilkinson equation [43]: equation (2) with λ = 0. Large deviations, 
however, ‘feel’ the presence of the KPZ nonlinearity from the start. The interest in 
the short-time dynamics emerged as a part of a general interest in large deviations in 
the KPZ equation. It was amplified by the discovery [28, 30–32] of a novel exponent 
in the stretched-exponential behavior of one of the two non-Gaussian tails of P (H, t): 
the λH < 0 tail. This tail appears already at t  >  0 and persists, at suciently large H, 
at all times. The important latter property was conjectured in [31], demonstrated in 
an explicit asymptotic calculation for ‘droplet’ initial condition in [44], reproduced by 
other methods in [45–47] and proved rigorously in [48].

Most of the previous works on the statistics of time-averaged quantities have consid-
ered the long-time limit, when the time is much longer than the characteristic relaxation 
time of the system to a steady state [17–20]. In such systems the long-time limit can be 
often described by the Donsker–Varadhan large deviation formalism [49, 50]. The KPZ 
interface does not reach a steady state in a one-dimensional (1D) infinite system: it contin-
ues to roughen forever. As a result, the statistics of time-averaged height is not amenable 
to the Donsker–Varadhan formalism, and one should look for alternatives. One such alter-
native, based on a small parameter, is provided by the optimal fluctuation method (OFM), 
1 We subtract from h (x = 0, t) in equation (1) the systematic displacement of the interface that results from the 
rectification of the noise by the KPZ nonlinearity [21–23].

https://doi.org/10.1088/1742-5468/ab16c1
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which is also known as the instanton method, the weak-noise theory, and the macroscopic 
fluctuation theory. In this method the path integral of the stochastic process, conditioned 
on a given large deviation, is evaluated using the saddle-point approximation. This leads 
to a variational problem, the solution of which gives the optimal (that is, most likely) path 
of the system, and the optimal realization of the noise. The ‘classical’ action, evaluated 
on the optimal path, gives the logarithm of the corresponding probability. The origin of 
the OFM is in condensed matter physics [51–54], but the OFM was also applied in such 
diverse areas as turbulence and turbulent transport [55–57], diusive lattice gases [19], 
stochastic reactions on lattices [58, 59], etc. It was already applied in many works to the 
KPZ equation and related systems [28–31, 33, 34, 36–40, 42, 60–66].

In this work we will employ the OFM to study fluctuations of the time-averaged 
height of the KPZ interface for the flat initial condition. We find that the short-time 

scaling behavior of the distribution P(H̄, t) is − lnP � S
(
H̄
)
/
√
t, the same as that of 

the one-point one-time statistics P (H, t) [28, 30–32], but the details of these two prob-
lems are dierent. We determine the variance and the third cumulant of the distribution 
P(H̄, t) and the asymmetric stretched-exponential tails. The λH̄ → ∞ tail behaves as

− lnP(H̄, t) � 16
√
2 ν|H̄|3/2

3D|λ|1/2t1/2
,� (3)

whereas the λH̄ → −∞ tail is the following:

− lnP
(
H̄, t

)
�

s0
√

|λ| |H̄|5/2

Dt1/2
,� (4)

where s0 � 1.61. The tails exhibit the same scalings as the previously determined tails of 
the one-point one-time KPZ height distribution. The optimal interface histories, domi-
nating these tails, are markedly dierent. One non-intuitive finding is that the optimal 
history, h (x = 0, t), of the interface height at x  =  0, conditioned on a specified H̄, is a non-
monotonic function of time: it exhibits a maximum or minimum at an intermediate time.

The remainder of this paper is organized as follows. In section 2 we formulate the 

OFM’s variational problem whose solution yields the large deviation function S
(
H̄
)
. 

In section  3 we derive the second and third cumulants of the distribution P(H̄, t). 
Sections 4 and 5 deal with the λH̄ → +∞ and λH̄ → −∞ tails of the distribution. In 
section 6 we extend the technique of section 4 to a more general problem of determining 
the probability density of observing a given height history

h (x = 0, t) = h0 (t)� (5)
of the KPZ interface at x  =  0. We summarize and briefly discuss our results in sec-
tion 7. Some technical details are relegated to appendices A and B.

2. Optimal fluctuation method

It is convenient to rescale time by the averaging time T, x by the diusion length 
√
νT , 

and the interface height h by ν/|λ|. Now the KPZ equation (2) takes the dimensionless 
form [31]

https://doi.org/10.1088/1742-5468/ab16c1
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∂th = ∂2
xh− 1

2
(∂xh)

2 +
√
ε ξ (x, t) ,� (6)

where ε = Dλ2
√
T/ν5/2 is the dimensionless noise magnitude, and we assume without 

loss of generality2 that λ < 0. In the weak-noise (that is, short-time) limit, which for-
mally corresponds to ε → 0, the proper path integral of equation (6) can be evaluated 
by using the saddle-point approximation. This leads to a minimization problem for the 
action functional

s [h (x, t)] =
1

2

∫ 1

0

dt

∫ ∞

−∞
dx

[
∂th− ∂2

xh+
1

2
(∂xh)

2

]2
.� (7)

The (rescaled) constraint (1),
∫ 1

0

h (x = 0, t) dt = H̄,� (8)

can be incorporated by minimizing the modified action

sΛ = s [h (x, t)]− Λ

∫ 1

0

dt h (x = 0, t) = s [h (x, t)]− Λ

∫ 1

0

dt

∫ ∞

−∞
dxδ (x)h (x, t) ,

�

(9)

where Λ is a Lagrange multiplier whose value is ultimately determined by H̄. As in 
the previous works [28, 31, 62], we prefer to recast the ensuing Euler–Lagrange equa-
tion into Hamiltonian equations for the optimal history h (x, t) of the height profile and 
its canonically conjugate ‘momentum’ ρ (x, t) which describes the optimal realization 
of the noise ξ:

∂th = δH/δρ = ∂2
xh− 1

2
(∂xh)

2 + ρ,� (10)

∂tρ = −δH/δh = −∂2
xρ− ∂x (ρ∂xh)− Λδ (x) ,� (11)

where the Hamiltonian H is

H = Λh (0, t) +

∫ ∞

−∞
dx ρ

[
∂2
xh− 1

2
(∂xh)

2 + ρ/2

]
.� (12)

The delta-function term in equation (11) is specific to the constraint of the time-aver-
aged height: it comes from the second term in equation (9) as we explain in appendix A. 
It describes an eective driving of the optimal noise ρ (x, t) by a permanent point-like 
source. The initial condition for the flat interface is

h (x, t = 0) = 0.� (13)
As the variation of sΛ must vanish at t  =  1, we obtain the boundary condition

ρ (x, t = 1) = 0.� (14)
After solving the OFM problem and returning from Λ to H̄, we can evaluate the 

rescaled action, which can be recast as

2 Changing the sign of λ is equivalent to changing the sign of h.

https://doi.org/10.1088/1742-5468/ab16c1
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s
(
H̄
)
=

1

2

∫ 1

0

dt

∫ ∞

−∞
dx ρ2 (x, t) .� (15)

This action is the short-time large-deviation function of the time-averaged height. It 

gives P
(
H̄,T

)
 up to pre-exponential factors: − lnP � s

(
H̄
)
/ε, or

− lnP
(
H̄,T

)
� ν5/2

Dλ2
√
T

s

(
|λ| H̄
ν

)
� (16)

in the physical variables. The same scaling behavior was obtained for the one-point 
one-time statistics [28, 30–32], but the functions s(. . . ) are of course dierent.

3. Lower cumulants

At suciently small H̄, or Λ, one can solve the OFM problem perturbatively in powers 
of H̄ or Λ. Previously, expansion in powers of Λ was used [31, 67]. As we show below, 
it is advantageous to switch to expansion in powers of H̄ at some stage, as this enables 
one to evaluate the third cumulant of P  by calculating an integral which only involves 
terms of leading order in H̄.

3.1. Second cumulant

In the leading order, we can neglect the nonlinear terms in the OFM equations, yielding

∂th = ∂2
xh+ ρ,� (17)

∂tρ = −∂2
xρ− Λδ(x).� (18)

These linear equations  correspond to the OFM applied to the Edwards–Wilkinson 
(EW) equation [43].

Solving equation (18) backward in time with the initial condition (14), we obtain

ρ (x, t) =
Λ

2

[
x erf

(
x

2
√
1− t

)
− |x|+ 2

√
1− t√
π

e−
x2

4(1−t)

]
� (19)

where erf (z) is the error function. This solution is shown in figure 1(a). Now we can 
solve equation (17) with the forcing term ρ (x, t) from equation (19) and with the initial 
condition (13). The solution, shown in figure 1(b), is elementary but a bit cumbersome, 
see appendix B.1. At all times t  >  0, the maximum height is reached at x  =  0, as to be 
expected. Surprisingly, this maximum height,

h (x = 0, t) =
Λ
[
(1 + t)3/2 − (1− t)3/2 − 2t3/2

]

3
√
π

� (20)

is a non-monotonic function of time, see figure  1(c). It reaches its maximum, 
hmax = 2Λ/(3

√
5π), at t  =  4/5.

https://doi.org/10.1088/1742-5468/ab16c1
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Plugging equations (19) into (15), we find s in terms of Λ:

s =
4
(√

2− 1
)
Λ2

15
√
π

.� (21)

In its turn, plugging equations (20) into (8), we determine the relation between Λ and 
H̄:

H̄ =
8
(√

2− 1
)
Λ

15
√
π

.� (22)

Now equations (16), (21) and (22) yield, in the physical units, a Gaussian distribution3

− lnP
(
H̄,T

)
� 15

√
πν H̄2

16
(√

2− 1
)
D
√
T
.� (23)

The variance of this Gaussian distribution—the second cumulant of the exact distribu-
tion P—is

VarH̄ =
8(
√
2− 1)D

√
T

15
√
πν

.� (24)

It scales as D
√
T/ν, as the second cumulant of the one-point one-time height distribu-

tion [22, 31, 68], but the numerical coecient is dierent. Not surprisingly, it is smaller 
than in the one-point one-time problem.

3.2. Third cumulant

The third cumulant already ‘feels’ the KPZ nonlinearity. In order to calculate the third 
cumulant, it is advantageous to switch to the perturbative expansion in H̄, rather than 
in Λ:

h (x, t) = H̄h1 (x, t) + H̄2h2 (x, t) + . . . ,� (25)

Figure 1.  (a) The optimal history of the noise ρ (x, t) /Λ versus x at rescaled 
times t  =  0, 0.5, 0.8 and 0.99 (from top to bottom). (b) The optimal history of the 
interface at rescaled times t  =  0.02, 0.1, 0.25 and 0.99 (from bottom to top). (c) 
h (x = 0, t) /Λ versus t. The maximum is reached at t  =  4/5.

3 There is a simple exact relation ds/dH̄ = Λ which is valid at all H̄. It can be proven explicitly, and it is a conse-
quence of the fact that H̄ and Λ are conjugate variables. A similar relation was quoted in [69]. By virtue of this 
relation equations (21) and (22) can be derived from one another with no need for calculating h (x, t).

https://doi.org/10.1088/1742-5468/ab16c1
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ρ (x, t) = H̄ρ1 (x, t) + H̄2ρ2 (x, t) + . . . .� (26)

Correspondingly,

s = H̄2s1 + H̄3s2 + . . . .� (27)
Plugging equation (25) into the definition (7) of s and taking leading order terms in H̄ 
(see appendix B.2), we find

s2 =
1

2

∫ 1

0

dt

∫ ∞

−∞
dx ρ1 (∂xh1)

2 .� (28)

Importantly, one does not have to determine the functions h2 and ρ2 in order to evalu-
ate s2. It suces to know the functions h1 and ρ1, determined above. Although they are 
known in analytical form, we were able to evaluate the double integral in equation (28) 
only numerically. The result, s2 = 0.263 08 . . ., is in good agreement with a direct evalu-
ation of s over numerical solutions to the OFM equations4, see figure 2.

With the cubic approximation (27) for s
(
H̄
)
 at hand, it is straightforward to calcu-

late the third cumulant of the distribution5:

κ3 = −
∂3
H̄
s(

∂2
H̄
s
)3
∣∣∣∣∣
H̄=0

ε2
(ν
λ

)3

= −3s2ε
2

4s31

(ν
λ

)3

= 0.003 058 . . .
D2λT

ν2
.� (29)

The scaling κ3 ∼ T  is the same as of the third cumulant of the one-point one-time 
height distribution [22, 31], but the numerical coecient is dierent.

4. λH̄ → +∞ tail: adiabatic soliton and everything around

Our numerics show that, at −H̄ � 1, ρ (x, t) is exponentially localized within a narrow 
boundary layer around x  =  0, see figure 3(a). A similar feature is present in the −H � 1 
tail of the one-point one-time distribution for deterministic initial conditions [28, 31, 33].  

Figure 2.  Markers: direct computation of the action s
(
H̄
)
 over numerical solutions 

to the OFM equations (10) and (11). The dashed and solid lines are the quadratic 
and cubic approximations from equation (27), which we obtained analytically.

4 In our numerical solutions of equations (10) and (11) we used the Chernykh–Stepanov back-and-forth iteration 
algorithm [69].
5 See e.g. section 4.2.5 of the supplemental material in [35].

https://doi.org/10.1088/1742-5468/ab16c1
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We now present an analytic theory in this limit, based on matched asymptotic expan-
sions. The idea is to approximately solve the OFM equations (10) and (11) in an inner 
region which includes the boundary layer around x  =  0 and match this solution to the 
‘outer’ solution where both ρ and the diusion term in equation  (10) are negligibly 
small. The outer region is described by the Hopf equation

∂tV + V ∂xV = 0� (30)
for the interface slope field V (x, t) = ∂xh (x, t), and it can be divided into two sub-
regions. At |x| > xs (t), where ±xs (t) are the positions of two V -shocks determined 
below, h (and therefore V ) are negligibly small due to the flat initial condition, whereas 
in the region δ (t) � |x| < xs (t) (where δ (t) denotes the width of the boundary layer 
and is found below) the Hopf flow is nontrivial and more complicated than the analo-
gous Hopf flows in one-point one-time problems considered previously [31, 33]. The 
whole outer region does not contribute to the action in the leading order. We begin by 
presenting the solution in the inner region and then we use it in order to evaluate the 
action. Afterwards, we find the outer solution and then match the two solutions in their 
joint region of validity.

In the one-point one-time problem [28, 31], one encounters an important class 
of exact solutions to the OFM equations (without the driving term −Λδ (x) in equa-
tion (11)), describing a strongly localized soliton of ρ and two outgoing ‘ramps’ of h 
[60, 63]:

Figure 3.  Solid lines: numerical solutions for the optimal path, corresponding 
to the λH � 1 tail. Here H̄ = −50. Shown are (a) the adiabatically varying 
soliton ρ (x, t) (bottom to top), (b) two adiabatically varying outgoing V -shocks 
V (x, t), and (c) two adiabatically varying outgoing ‘ramps’ h (x, t) at rescaled 
times t = 0, 0.25, 0.5, 0.75, 1. Panel (d) shows h (x = 0, t) versus time. The numerical 
results are almost indistinguishable from the analytical predictions (33), (40), (41), 
(49) and (51) (dashed lines). The only exception is the inset of panel (d), but notice 
its vertical scale. The horizontal scale in panel (a) is of the order of magnitude of 
the boundary layer, whereas in (b) and (c) it is of the order of magnitude of the 
Hopf length scale  ∼

√
−H̄ .

https://doi.org/10.1088/1742-5468/ab16c1
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ρ (x, t) = −2c sech2

(√
c

2
x

)
,� (31)

h (x, t) = 2 ln cosh

(√
c

2
x

)
− ct,� (32)

where c  >  0 is the velocity of the h-front in the vertical direction. In the present prob-
lem the driving term in equation (11) causes the soliton-front solution to vary with time 
adiabatically:

ρ (x, t) = −2c (t) sech2

[√
c (t)

2
x

]
,� (33)

h (x, t) = 2 ln cosh

[√
c (t)

2
x

]
+ h0 (t) ,� (34)

where h0 (t) = h (x = 0, t) is the interface height at the origin, and the function c (t) to 
be found is much larger than 1. c (t) is related to Λ through the balance equation

d

dt

∫
ρdx = −Λ,� (35)

which can be obtained by integrating both sides of equation (11) over x from −∞ to ∞. 
Plugging equations (33) into (35), we obtain

2
√
2√

c (t)

dc

dt
= Λ.� (36)

Furthermore, we can find a connection between c (t) and h0 (t). Plugging the ansatz (33) 
and (34) into equation (10) we obtain

x√
c (t)

tanh

[√
c (t)

2
x

]
dc

dt
+

dh0 (t)

dt
= −c (t) .� (37)

We now identify the inner region as |x| � ∆(t), where

∆(t) =
[c (t)]3/2

ċ (t)
.� (38)

(As one can check a posteriori, ∆(t) is much larger than the characteristic soliton width 

δ (t) = 1/
√
c(t).) In the region |x| � ∆(t) the first term in equation (37) is negligible, 

and we obtain the expected adiabatic relation

dh0(t)

dt
= −c (t) .� (39)
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We now integrate the ordinary dierential equations  (36) and (39) subject to 
h0 (t = 0) = 0, equation  (8), and c (t = 1) = 0 (the latter condition follows from the 
boundary condition (14) and equation (33))6. We obtain H̄ = −Λ2/128, and

c (t) = 4
∣∣H̄∣∣ (1− t)2 ,� (40)

h0 (t) =
4

3
H̄

[
1− (1− t)3

]
.� (41)

Note that the leading-order asymptotic result (41) describes a monotonically decreasing 
function of t. Numerics show that h0 (t) is in fact not monotonic, but the local minimum 
at an intermediate time is very shallow, see figure 3(d). The non-monotonicity should 
appear in a subleading order of the theory with respect to −H̄ � 1.

Now we can evaluate the action. Plugging equations (33) into (15) and using equa-
tion (40), we obtain

s =
1

2

∫ 1

0

4c2 (t) dt

∫ ∞

−∞
dx sech4

[√
c (t)

2
x

]
=

8
√
2

3

∫ 1

0

[c (t)]3/2 dt =
16
√
2

3

∣∣H̄∣∣3/2

�

(42)

which leads, in the physical units, to the announced equation (3). This tail scales as the 
previously determined λH → +∞ tail of the one-point one-time distribution P (H,T ) 

[28, 31], but the coecient in the exponent of P
(
H̄,T

)
 is twice as large.

Using equation  (40), we can evaluate the characteristic soliton width, 
δ (t) ∼ |H̄|−1/2(1− t)−1. At −H̄ � 1, δ (t) is much smaller than 1 until very close to 
t  =  1. In its turn, the length scale ∆(t) ∼ |H̄|1/2(1− t)2 is much larger than 1, except 
very close to t  =  1. Finally, the condition c (t) � 1 also holds except very close to t  =  1.

As it is evident from the calculations in equation  (42), the large deviation func-

tion s
(
H̄
)
 comes only from the adiabatically varying ρ-soliton, which is exponentially 

localized within the boundary layer of width δ (t) around x  =  0. Still, for complete-
ness, we now determine the optimal path h (x, t) in the outer region, that is outside 
this boundary layer. Here ρ is negligible, and we can also neglect the diusion term in 
equation (10) which, similarly to [31], bring us to the Hopf equation (30). We will now 
solve this equation and match the solution with the inner solution in their joint region 
of their validity. It suces to solve for x  >  0. The solution for x  <  0 is obtained from 
the mirror symmetry of the problem around x  =  0.

The general solution to equation (30) is given in the implicit form by [71]
F (V ) = x− V t,� (43)

where F (V ) is an arbitrary function. The joint region of validity of the Hopf solution 
and the boundary-layer solution is δ (t) � x � ∆(t). Using equation (40), we find that 
the joint region is6

6 The adiabatic soliton-front ansatz (33) and (34) is only valid for c � 1. There are short temporal boundary lay-
ers near t  =  0 and t  =  1 where the solution rapidly adapts to the boundary conditions (13) and (14). In the limit 
−H̄ � 1 the relative contribution of these temporal boundary layers to the action is negligible.
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1∣∣H̄∣∣1/2 (1− t)
� x �

∣∣H̄∣∣1/2 (1− t)2 .� (44)

In this region equations (34) and (40) lead to

V �
√
2c (t) = 2

√
−2H̄ (1− t) ,

� (45)
which is easily inverted

t � 1− V

2
√
−2H̄

.� (46)

We now match equation (46) with the Hopf solution in the joint region (44). As we 
shall check later, in this region x is negligible compared with the other terms in equa-
tion (43), so equations (43) and (46) yield

F (V ) = −V +
V 2

2
√
−2H̄

.� (47)

With F (V ) at hand, we can obtain the solution V (x, t) in the entire nontrivial Hopf 
region

δ (t) � x < xs (t) ,� (48)
where the V -shock position xs (t) is determined below. Plugging equation (47) back into 
(43) and solving for V , we obtain a self-similar expression

V (x, t) =
√

−2H̄ (1− t) Φ

[ √
2x√

−H̄(1− t)2

]
,� (49)

where Φ(z) = 1 +
√
1 + z , and we chose the plus sign in front of 

√
1 + z so that V > 0 

at x  >  0, corresponding to a minimum of h at x  =  0. One can now verify that in the 
joint region (44) x is negligible in equation  (49) so that the latter equation  indeed 
reduces to (45). It is now straightforward to find the optimal history of the interface 
height h (x, t) in the nontrivial Hopf region (48) from the relation

h (x, t) = h (0, t) +

∫ x

0

V (x′, t)dx′.� (50)

With equations (41) and (49), this yields

h (x, t)

H̄
�





4
3
− (1− t)3f

[ √
2|x|√

−H̄(1−t)2

]
, |x| < xs (t) , (51)

0, |x| > xs (t) , (52)

where

f (z) =

∫ z

0

Φ (z′) dz′ +
4

3
=

2

3
(1 + z)3/2 +

2

3
+ z,� (53)

and we symmetrized the solution around x  =  0.
The V -shock positions ±xs (t) are described by the equation
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xs (t) =

√
−H̄

2
(1− t)2 f−1

[
4

3 (1− t)3

]
,� (54)

where f −1(z) is the inverse of the function f(z). We do not give here the rather cumber-
some expression for f −1, but the resulting xs (t) is plotted in figure 4. In contrast to the 
one-point one-time problem [31] the shock velocity ẋs (t) here is not constant: it slowly 

decreases with time. At t � 1 we obtain xs (t) �
√
−2H̄ t; the corresponding shock 

speed is equal to the one half of V (x, t) at t � 1 (see equation (45)), as it should [70]. 
At t → 1 xs (t) approaches the point xs (t = 1) = 21/6

√
−H̄.

Notice that the solution (51) does not satisfy the flat initial condition (13), but this 
is of no concern because xs (t = 0) = 0, so the nontrivial Hopf region (48) is nonexistent 
at t  =  0. At t  =  0 the entire system is in the trivial region where h vanishes.

Our numerical results show good agreement with the analytic predictions, see 
figure 3. For example, for H̄ = −50 the action computed on the numerical solution, 
s � 2647, is about 1% o the analytical prediction, s = 2666.66 . . . of equation (42).

The adiabatic soliton theory presented here can be extended to a more general prob-
lem of finding the probability distribution of observing a given height history at x  =  0, 
see equation (5). We determine the corresponding tail of this probability distribution, 
in section 6. We also show there how the solution of the more general problem can be 
used to reproduce some of the results of this subsection.

5. λH̄ → −∞ tail: how a negative-pressure gas leaks into a wall

In this tail of the distribution P
(
H̄,T

)
, the optimal path is large-scale in terms of both 

h and ρ, and we can neglect the diusion terms in equations (10) and (11) altogether 
[28, 31]. The resulting equations

∂tV + V ∂xV = ∂xρ,� (55)

∂tρ+ ∂x (ρV ) = −Λδ (x) ,� (56)

Figure 4.  Solid line: the location xs (t) of the V -shock which separates the 
nontrivial Hopf region (48) from the trivial region where ρ = h = V = 0 in the 
−H̄ � 1 tail, see equations (51) and (54). The shock velocity ẋs (t) goes down with 

time. Dashed line: the asymptote xs (t � 1) �
√
−2H̄ t. The fat dot denotes the 

point xs (t = 1) = 21/6
√
−H̄.
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describe 1D inviscid hydrodynamics (HD) of a compressible ‘gas’ with density ρ (x, t) 
and velocity V (x, t) = ∂xh (x, t) [31]. The gas is unusual: it has negative pressure 
p (ρ) = −ρ2/2. As described by equations (13) and (14), the gas flow starts from rest, 
V = 0 at time t  =  0, and it leaks, at constant rate Λ, into the origin until time t  =  1 
when no gas is left.

The additional HD rescaling

x/Λ1/3 → x, V/Λ1/3 → V , ρ/Λ2/3 → ρ,� (57)

leaves equations (55), (13) and (14) invariant and replaces Λ by 1 in equation (56). As 
a result, the HD problem becomes parameter-free, and one immediately obtains the 
scalings s (Λ) ∼ Λ5/3 and H̄ (Λ) ∼ Λ3/2 leading to

s
(
H̄
)
= s0H̄

5/2,� (58)

which corresponds to equation (4) in the physical units. Here s0  =  O(1) is a dimension-
less number to be found. Another way to obtain the scaling (4) is to require the distri-
bution (16) to be independent of the diusion coecient ν.

To complete the formulation of the HD problem, we derive an eective bound-
ary condition at x  =  0. Due to the mirror symmetry of the problem, x ↔ −x, the 
solution should satisfy the relations ρ (−x, t) = ρ (x, t) and V (−x, t) = −V (x, t). As a 
result, ρ (x, t) of the HD solution must be continuous at x  =  0, see also equation (11). 
Integrating equation (56) (with Λ = 1) with respect to x over an infinitesimally small 
interval which includes x  =  0, we find that the HD solution must include a V -shock at 
x  =  0 which satisfies the relation

ρV |x→0+ − ρV |x→0− = −1.� (59)
Therefore, it suces to solve equations (55) and (56) for x  >  0: without the delta-func-
tion term in equation (56), but with the following eective boundary condition:

ρV |x→0+ = −1

2
.� (60)

This boundary condition describes a constant mass flux of the gas into the origin. 
Similarly to the previous works [31], this HD flow has three distinct regions: (a) the 
pressure-driven flow region 0 < x < � (t) with an a priori unknown � (t), (b) the Hopf 
region � (t) < x < �0, where �0 = � (t = 0), and (c) the trivial region x � �0 where ρ and 
V  vanish identically. In the Hopf region ρ (x, t) vanishes identically, and equation (55) 
becomes the Hopf equation (30) whose general solution (43) is to be matched continu-
ously with the pressure-driven solution at x = � (t) and must vanish at x = �0.

In spite of the major simplification, provided by the inviscid approximation, we 
have not been able to solve the HD problem analytically. The reason is the nonzero-
flux boundary condition (60). (For the zero mass flux at the origin the HD solution 
describes a uniform-strain flow, and it is quite simple [30, 31].) Therefore, we relied on 
a numerical solution.

Numerical solutions for 1D inviscid gas flows are usually obtained in Lagrangian 
mass coordinates [72]. In the context of the OFM theory for the KPZ equation it was 
recently done in [42] which studied the one-time statistics of the interface height at an 
arbitrary point on a half-line. In the present problem the use of the Lagrangian mass 
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Figure 5.  Numerical results for the optimal path (at x  >  0), corresponding to the 
−λH̄ � 1 tail. (a) Rescaled ρ (x, t) at times t = 0, 0.1, 0.5, 0.75, 0.82 and 0.9 (top to 
bottom). Inset: the diusion-dominated boundary layer near x  =  0. (b) Rescaled 
V (x, t) at times 0.1(1), 0.5(2), 0.75(3), 0.82(4) and 1(5). (c) Rescaled h (x, t) at 
the same times as in (b). (d) Rescaled h (x = 0, t) versus t. The coordinates of 
indicated points are (0.826, 0.543)—the maximum height—and (1, 0.472). All the 
data is plotted for two dierent values of Λ: 75 700 and 97 500, which correspond 
to H̄ � 704, s � 2.14× 107 and H̄ � 834, s � 3.26× 107, respectively. The two 
data sets are indistinguishable, verifying the hydrodynamic scaling (57). The 
pressure-driven flow region and the Hopf region are clearly seen in panels (a)–(c).  
The regime x  <  0 is given by symmetrization of ρ and h and by antisymmetrization 
of V .

Figure 6.  (a) The rescaled ‘mass flux’ ρV  at x  =  0.2 as a function of t. (b) ρV  as a 
function of rescaled x at times t = 0.25, 0.5, 0.75, 0.9. Both plots are for Λ = 97 500. 
The eective HD boundary condition (60) is satisfied except in narrow temporal 
boundary layers near t  =  0 and t  =  1, and in a narrow spatial boundary layer 
around x  =  0.
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coordinate is inconvenient because of the ‘mass leakage’ at x  =  0. Therefore, we solved 
numerically the full OFM equations (10) and (11) in the regime H̄ � 1. The numer
ical solutions verified the HD scaling (57), see figure 5. As can be seen in panel (b), the 
V -shock, predicted by the HD equations at x  =  0, is smoothed out by diusion over a 
narrow boundary layer. The pressure-driven flow region and the Hopf region are also 
clearly seen in figure 5. We also checked that the eective HD boundary condition (60) 
holds, see figure 6. From figure 5(b) it can be seen that �0 � 0.8.

Most importantly, we verified the scaling relation (58) of the action, see figure 7. 
Using the numerical data, we computed the factor s0  =  O(1) in the following manner. 
The relation3 ds/dH̄ = Λ alongside with equation (58) leads to

s (Λ) �
(
2

5

)5/3

s
−2/3
0 Λ5/3, Λ � 1.� (61)

As seen in figure 7, s
(
H̄
)
/H̄5/2 as a function of H̄ converges relatively slowly in the 

H̄ → +∞ tail (a similar slow convergence of s
(
H̄
)
/H̄5/2 for the one-point statistics 

was observed in the one-point one-time problem, see the inset of figure  1 of [31]). 
Fortunately, s(Λ)/Λ5/3 as a function of Λ converges much faster, see figure 7(b). By 

comparing equation (61) with the data of figure 7 (b), we find (2/5) 5/3s
−2/3
0 � 0.158. 

The resulting s0 � 1.61 turns out to larger by a factor of 6.7 than the corresponding 
factor 8

√
2/(15π) for the one-point one-time height statistics tail λH → −∞ [30, 31].

6. Adiabatic soliton theory for a more general problem

Here we consider the following problem: what is the probability density P [h0 (t)] of 
observing a whole given one-point height history

h (x = 0, t) = h0 (t)� (62)
of the KPZ interface at the origin? The OFM formulation of this problem is a general-
ization of that of the time-average problem. We argue that the only dierence is that 
the second OFM equation (11) must be replaced by

Figure 7.  The action computed numerically in the −λH̄ � 1 tail. (a) s
(
H̄
)
/H̄5/2 as 

a function of H̄. (b) s(Λ)/Λ5/3 as a function of Λ. Both graphs approach constants 
in the limit H̄, Λ → +∞. However, as it is evident from the large dierence between 
the vertical scales, s(Λ)/Λ5/3 converges much faster.

https://doi.org/10.1088/1742-5468/ab16c1


Time-averaged height distribution of the Kardar–Parisi–Zhang interface

17https://doi.org/10.1088/1742-5468/ab16c1

J. S
tat. M

ech. (2019) 053207

∂tρ = −∂2
xρ− ∂x (ρ∂xh)− Λ0 (t) δ (x) ,� (63)

where Λ0 (t) is a function which takes the role of (infinitely many) Lagrange multipliers, 
and is ultimately determined by the specified h0 (t). One way to reach equation (63) is 
by imposing a finite number of intermediate-time constraints

h (0, ti) = h0,i, i = 1, . . . ,N� (64)
at times 0 < t1 < · · · < tN < 1, and then taking the continuum limit.

Let us focus on histories

h0 (t) = Mg (t) ,� (65)
where g (0) = 0, g (1) = 1 and g (t) is monotone increasing, ġ (t) > 0, and consider the 
limit M → −∞ (the reason for these requirements will become clear shortly). We argue 
that the adiabatic soliton ansatz (33) and (34) is still correct. c (t) is found from the adi-
abatic relation (39), and is related to Λ0 (t) through equation (36) with the right-hand 
side replaced by Λ0 (t). We must require c � 1 for the adiabatic soliton theory to be 
valid, and this is the reason that we demanded that g (t) be monotonic and considered 
M → −∞. The action associated with the distribution P [h0 (t)] is given by a simple 
generalization of equation (42), which is obtained by using equation (39) instead of (40):

s =
8
√
2

3

∫ 1

0

[
−dh0(t)

dt

]3/2
dt.� (66)

Here too the outer region, where ρ (x, t) � 0, does not contribute to the action and 
does not aect this distribution tail. As a result, the initial condition h (x, t = 0) does 
not play a major role, and this tail is universal for a whole class of deterministic initial 
conditions.

Equation (66) can be used to find the corresponding tail of many simple KPZ height 
statistics that can be viewed as particular examples. We now demonstrate this by 
reproducing the tails of the distributions of the one-point one-time height H [28, 31] 
and of the time-averaged height H̄.

We obtain the H → −∞ tail of the one-point one-time height distribution by a 
minimization of the action (66) over histories h0 (t) at the origin. The ensuing Euler–
Lagrange equation reduces to d2h0/dt

2 = 0, and its solution subject to the boundary 
conditions h0 (0) = 0 and h0 (1) = H is h0 (t) = Ht. Plugging h0 (t) back into (66), we 
obtain the tail

s =
8
√
2

3
|H|3/2� (67)

in agreement with [28, 31].
For the H̄ → −∞ tail of the time-averaged height distribution we must minimize 

(66) over h0 (t), under the constraints h0 (0) = 0 and equation (8). The constraint (8) 
calls for a Lagrange multiplier, so we define

sΛ =
8
√
2

3

∫ 1

0

[
−dh0(t)

dt

]3/2
dt− Λ

∫ 1

0

h0 (t) dt,� (68)
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while the ‘lacking’ boundary condition is the condition dh0/dt(t = 1) = 0 at the ‘free 
boundary’ t  =  1 [73]. The Euler–Lagrange equation associated with sΛ,

d2h0(t)

dt2
= − Λ

2
√
2

[
−dh0(t)

dt

]1/2
,� (69)

is equivalent to both of the equations (36) and (39), and its solution under the con-
straints listed above indeed coincides with equation (41). Plugging equation (41) back 
into (66) this indeed reproduces the tail (42).

One can also use equation (66) to obtain a proper tail of the joint distribution of H 
and H̄.

7. Summary and discussion

We calculated the Gaussian asymptote (23), the third cumulant (29) and the two 
stretched exponential tails (3) and (4) of the short-time distribution of the time-averaged 
height H̄ at a given point of an infinite initially flat KPZ interface in 1  +  1 dimensions. 
We also found the corresponding optimal path of the interface, conditioned on a given 
H̄. The scaling of the logarithm of the distribution with H̄ turns out to be the same as 
that observed for one-point statistics, but the details (and especially the optimal paths) 
are quite dierent. In all regimes we observed that the probability to observe a certain 
unusual value of H̄ is smaller than the probability to observe the same value of H in 
the one-time problem. The OFM makes it obvious why: in order to reach a given H̄, 
the optimal interface height must reach a higher value at an earlier time.

One non-intuitive feature that we observed is a non-monotonic behavior of the opti-
mal interface height at x  =  0 as a function of time. This eect is most pronounced for 
the typical fluctuations of H̄ (as described by the Gaussian region of the distribution) 
and in the λH̄ → −∞ tail. It is much weaker in the λH̄ → +∞ tail.

Solving the OFM equations analytically in the λH̄ → −∞ tail remains challenging 
even after a drastic reduction of the problem to that of an eective hydrodynamic flow, 
as we described in section 5.

It would be interesting to extend our results to the other two standard initial condi-
tions of the KPZ equation: droplet and stationary. We expect the short-time scaling of 
the distribution to be the same. For the droplet initial condition (actually, for a whole 
class of deterministic initial conditions), we expect the λH̄ → +∞ tail to coincide with 
that for the flat initial condition. For the stationary interface it would be interesting to 
find out whether the dynamical phase transition, reflecting spontaneous breaking of the 
mirror symmetry by the optimal path and observed in the one-point one-time problem 
[34, 35, 38], persists in the statistics of H̄.

The adiabatic soliton theory of section 4 can be also very useful in determining 
other types of short-time height statistics. We demonstrated this in section 6 by apply-
ing this theory to the more general problem of calculating the probability density of 
observing a given height history at the origin.

Finally, it would be very interesting, but challenging, to study the time-average 
height statistics in the long-time limit, or even at arbitrary times. In analogy with the 

https://doi.org/10.1088/1742-5468/ab16c1


Time-averaged height distribution of the Kardar–Parisi–Zhang interface

19https://doi.org/10.1088/1742-5468/ab16c1

J. S
tat. M

ech. (2019) 053207

one-point one-time distribution [36, 44–47], it is reasonable to expect that the large-
deviation distribution tails, predicted in this work, will continue to hold, suciently far 
in the tails, at arbitrary times.
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Appendix A. Derivation of OFM equations and boundary conditions

The variation of the modified action (9) is

δsΛ =

∫ 1

0

dt

∫ ∞

−∞
dx

[
∂th− ∂2

xh+
1

2
(∂xh)

2

] (
∂tδh− ∂2

xδh+ ∂xh ∂xδh
)
− Λ

∫ 1

0

dt δh (x = 0, t) .

� (A.1)
Let us introduce the momentum density field ρ (x, t) = δL/δ (∂th), where

L {h} =
1

2

∫ ∞

−∞
dx

[
∂th− ∂2

xh+
1

2
(∂xh)

2

]2

is the Lagrangian. We obtain

ρ = ∂th− ∂2
xh+

1

2
(∂xh)

2 ,� (A.2)

which can be rewritten as equation (10), the first Hamilton equation of the OFM. Now 
we can rewrite the variation (A.1) as follows:

δsΛ =

∫ 1

0

dt

∫ ∞

−∞
dx ρ (∂tδh− ∂2

xδh+ ∂xh ∂xδh)− Λ

∫ 1

0

dt

∫ ∞

−∞
dx δh (x, t) δ (x) .

�

(A.3)

Requiring the variation to vanish for arbitrary δh yields, after several integrations by 
parts, the second Hamilton equation (11) of the OFM. The boundary terms in space, 
resulting from the integrations by parts, all vanish. The boundary terms in time must 
vanish independently at t  =  0 and t  =  1. They vanish at t  =  0 because of the deter-
ministic initial condition (13), and the boundary term at t  =  1 leads to the boundary 
condition (14).

Appendix B. Lower cumulants

B.1. Optimal path in the Edwards–Wilkinson regime

The optimal path in the EW regime is obtained by solving equation (17) with the initial 
condition (13) and with the forcing term ρ (x, t) from equation (19). Using ‘Mathematica’ 
[74], we obtain
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h (x, t) =
Λ

24

{
x

[
2x |x|+

(
6t− x2 − 6

)
erf

(
x

2
√
1− t

)

−2
(
6t+ x2

)
erf

(
x

2
√
t

)
+
(
6t+ x2 + 6

)
erf

(
x

2
√
t+ 1

)]

+
2√
π
e−

(2t+1)x2

4t(t+1)

[
√
1− t e

(1−3t2)x2
4t−4t3

(
4t− x2 − 4

)
− 2

√
t e

x2

4t+4

(
4t+ x2

)

+
√
t+ 1 e

x2

4t

(
4t+ x2 + 4

)]}
,

�

(B.1)

so ∂xh (x, t), which is useful for evaluating the third cumulant, is

∂xh (x, t) =
Λ

4

{(
t− x2

2
− 1

)
erf

(
x

2
√
1− t

)
−
(
2t+ x2

)
erf

(
x

2
√
t

)
+

2t+ x2 + 2

2
erf

(
x

2
√
t+ 1

)
+ x |x|

+
x√
π

[√
t+ 1 e−

x2

4(t+1) −
√
1− t e

x2

4(t−1) − 2
√
t e−

x2

4t

]}
.

�
(B.2)

B.2. Shortcut for evaluating the third cumulant

We denote by

sEW [h (x, t)] =
1

2

∫ 1

0

dt

∫ ∞

−∞
dx

(
∂th− ∂2

xh
)2

� (B.3)

the dynamical action, corresponding to the Edwards–Wilkinson equation. The mini-
mum of sEW under the conditions (8) and (13) is given by h (x, t) = H̄h1 (x, t), so the 
variational derivative δsEW/δh vanishes on this profile for any δh (x, t) which satisfies 

the conditions δh (x, 0) = 0 and 
∫ 1

0
δh (0, t) dt = 0. Since h2(x,t) in equation (25) satisfies 

these conditions, we find

sEW
[
H̄h1 (x, t) + H̄2h2 (x, t) +O

(
H̄3

)]
= sEW

[
H̄h1 (x, t)

]
+O

(
H̄4

)
= H̄2s1 +O

(
H̄4

)
,�
(B.4)

that is, the term cubic in H̄ vanishes. The action (7) can be rewritten as

s = sEW +
1

2

∫ 1

0

dt

∫ ∞

−∞
dx

[(
∂th− ∂2

xh
)
(∂xh)

2 +
1

4
(∂xh)

4

]
.� (B.5)

We now plug the perturbative expansion (25) into (B.5) and using equation (B.4) we 
obtain

s = H̄2s1 +
H̄3

2

∫ 1

0

dt

∫ ∞

−∞
dx

(
∂th1 − ∂2

xh1

)
(∂xh1)

2 +O
(
H̄4

)
.� (B.6)

So the cubic term in s
(
H̄
)
 is H̄3s2 where s2 is given by equation (28), and we used the 

fact that h1(x,t) and ρ1(x, t) satisfy equation (17).
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